Blog Archives

ESD Control Programs Should be Improved

ElectroStatic Discharge (ESD) is the hidden enemy within your factory. You cannot feel or see most ESD events but they can cause electronic components to fail or cause mysterious and annoying problems. There are two types of ESD damage: 1) Catastrophic failures, and 2) Latent defects. By definition, normal quality control inspections are able to identify catastrophic failures, but are not able to detect latent defects.

In general, the ESD susceptibility of modern electronics are more sensitive to ElectroStatic Discharge; that is the withstand voltages are lower. This is due to the drive for miniaturization particularly with electronic devices operating faster. Thus the semiconductor circuitry is getting smaller.

See November 2001 Evaluation Engineering Magazine article “ESD Control Program Development” “As the drive for miniaturization has reduced the width of electronic device structures to as small as 0.10 micrometer (equal to 0.0001 millimeter or 0.000004 inch), electronic components are being manufactured with increased ElectroStatic Discharge (ESD) susceptibility.”

What’s happening currently? Intel began selling its 32 nm processors in 2010 that would be 0.032 micrometer equal to 0.000032 millimeter or 0.00000128 inch.

See www.ESDA.org, the ESD Association’s latest White Paper “Electrostatic Discharge (ESD) Technology Roadmap – Revised April 2010” forecasts increased ESD sensitivities continuing the recent “trend, the ICs became even more sensitive to ESD events in the years between 2005 and 2009. Therefore, the prevailing trend is circuit performance at the expense of ESD protection levels.” The White Paper’s conclusions are:

“With devices becoming more sensitive through 2010-2015 and beyond, it is imperative that companies begin to scrutinize the ESD capabilities of their handling processes. Factory ESD control is expected to play an ever-increasing critical role as the industry is flooded with even more HBM and CDM sensitive designs. For people handling ESD sensitive devices, personnel grounding systems must be designed to limit body voltages to less than 100 volts.

To protect against metal-to-device discharges, all conductive elements that contact ESD sensitive devices must be grounded.

To limit the possibilities of a field induced CDM ESD event, users of ESD sensitive devices should ensure that the maximum voltage induced on their devices is kept below 50 volts.

To limit CDM ESD events, device pins should be contacted with static-dissipative material instead of metal wherever possible.”

See InCompliance Magazine May 2010 article by Dr. Terry L. Welsher The “Real” Cost of ESD Damage which includes “Recent data and experience reported by several companies and laboratories now suggest that many failures previously classified as EOS may instead be the result of ESD failures due to Charged Board Events (CBE). … Some companies have estimated that about 50% of failures originally designated as EOS were actually CBE or CDE.”

Protektive Pak Logo

Advertisements

ESD Control: What Is ANSI/ESD S20.20?

Gene Felder of Desco Industries describes the ANSI/ESD Standard S20.20 and how it applies to an ESD control program.

To see Protektive Pak’s video channel Click Here.