Tips for Addressing Charged Device Model Failures


CHARGED DEVICE MODEL

It may seem to some that CDM has newly arrived as a problem for ESD control programs. However, the ESD Association first published ANSI/ESD STM5.3.1 in 1999 – ESD Association Standard for Electrostatic Discharge Sensitivity Testing – Charged Device Model (CDM) – Component Level. Basically, CDM testing has to do with “testing, evaluating and classifying the electrostatic discharge (ESD) sensitivity of components to the defined charged device model (CDM)” … “to allow for accurate comparisons of component CDM ESD sensitivity levels.”

JESD22-C101C Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components Table 3
Devices shall be classified as follows:
CLASS I <200 volts
CLASS II 200 to <500 volts
CLASS III 500 to 1000 volts
CLASS IV >1000 volts

The importance of CDM came about primarily because of the increased use of automated component handling systems. The Foreword of ANSI/ESD STM5.3.1 states “In the CDM a component itself becomes charged (e.g., by sliding on a surface (tribocharging) or by electric field induction) and is rapidly discharged (by an ESD event) as it closely approaches a conductive object.”

In November 2002, Roger Peirce published an article entitled “The Most Common Causes of ESD Damage”. There were actually 23 causes. As the founder and president of ESD Technical Services, Roger had investigated hundreds of companies for over eight years. All 23 causes were CDM failure modes. So CDM is really not so new, it has just received a lot of attention in the last few years.


TACKLING CDM

So, what are the things companies should look at to improve their ESD control program regarding CDM? It would seem to be easy: don’t slide ESDS devices and assemblies unless grounded at all times, keep insulators at least 12” away from ESDS, and don’t allow ESDS items to make contact with a conductive surface. Seems simple, but in actual application . . . not so easy.

If the ESD control program has not used ionization that should be considered. If the ESDS items becomes charged, ionization will help neutralize the charge. The primary function of ionizers with regard to ESDS items are:

  • To remove / neutralize charges from process necessary insulators, which can charge ESDS items, thus creating the potential for a damaging CDM event
  • Remember that the PCB substrate is a process necessary insulator and can become charged during automated handling processes
  • To remove / neutralize charges from a charged, isolated/floating conductor, which, when grounded can result in a potentially damaging CDM event
  • Remember that during automated handling processes, the ESDS devices on the PCB are isolated or floating conductors

Application Photo Overhead Ionizer

The ESD Standards Committee has a Working Group (WG-17) which is currently involved with developing a Standard for Process Assessment to help the electronics community assess their manufacturing and handling processes to determine what levels of devices their process can handle. Once one fully understands where their process is with regards to ESDS devices and assemblies, they will have a clearer picture on what actions need to be taken to further improve the ESD Control Program.

If ionizers are already in use, the company should consider reducing the ionizer offset voltage limit of ±50 volts (the required limit in ANSI/ESD S20.20) to ±25 volts and maybe less, depending on the application and device sensitivity. Discharge times are user defined and should be considered for reducing the time required to neutralize a ± 1,000 volt charge to ± 100 volts.

The required limit for worksurfaces per ANSI/ESD S20.20 is less than 1 x 10^9 ohms with no lower limit. Most companies handling electronics should be following the recommendation of Worksurface standard ANSI/ESD S4.1 that the lower limit be 1 x 10^6 ohms. To combat CDM failures, all surfaces that might come into contact with ESDS items should be dissipative at the 1 x 10^6 to less than 1 x 10^9 ohms range used for worksurfaces where possible. Items such as Static Shielding bags will have a higher resistance on the interior & exterior surfaces, but it still must be less than 1 x 10^11 ohms.

Application Photo Statfree Worksurface Mat

From published article “Now is the Time for ESD Control Programs to be Improved” by Fred Tenzer and Gene Felder. See full article at InCompliance Magazine- September 2012

Advertisements

About Protektive Pak

Protektive Pak is a leading manufacturer of ESD Material Handling and Packaging solutions. We offer a complete line of ESD Packaging products for transporting, storing and shipping of static sensitive assemblies. Our products include Storage Containers, Circuit Board Shippers, Open Bin boxes, Reel Storage Containers, Trays, Foam, Tape, Shielding Bags and much more! We also have custom manufacturing capabilities to your meet your special needs, including Thermoforming requirements. Protektive Pak offers a unique “Impregnated” corrugated material that provides greater durability than “painted” corrugated material. The buried shielding layer protects ESD sensitive items (ESDS) and minimizes sloughing and rub-off contamination. We also offer Plastek Industrial Fluted Plastic, an economical alternative to injection molded products and ideal for use where corrugated and /or paper products cannot be used. For further information, please visit our website at www.ProtektivePak.com

Posted on October 16, 2012, in Article, ESD Information, ESD Tips and tagged , , , , , , . Bookmark the permalink. Leave a comment.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: